Title: The complexity of first-order and monadic second-order logic revisited

Authors: Markus Frick and Martin Grohe

Abstract: The model-checking problem for a logic L on a class C of structures asks whether a given L-sentence holds in a given structure in C. In this paper, we give super-exponential lower bounds for fixed-parameter tractable model-checking problems for first-order and monadic second-order logic.

We show that unless PTIME=NP, the model-checking problem for monadic second-order logic on finite words is not solvable in time $f(k) \ p(n)$, for any elementary function $f$ and any polynomial $p$. Here $k$ denotes the size of the input sentence and $n$ the size of the input word. We prove the same result for first-order logic under a stronger complexity theoretic assumption from parameterized complexity theory.

Furthermore, we prove that the model-checking problems for first-order logic on structures of degree 2 and of bounded degree $d>2$ are not solvable in time $2^{2^{o(k)}} \ p(n)$ (for degree 2) and $2^{2^{2^{o(k)}}} \ p(n)$ (for degree $d>2$), for any polynomial $p$, again under an assumption from parameterized complexity theory. We match these lower bounds by corresponding upper bounds.

May 2, 2002 - Martin Grohe